Elpro • 10 D.S.A.

SLIDING GATES

TERMINALS FOR THE CONNECTION OF THE PUSH BUTTONS PULIN 3

24 V POWER

SUPPLY

RADIO CONTROL
PLUG-IN CARD SUPPORT
 COMMON
N.O. CONTACT. OPEN
N.O. CONTACT. CLOSE
N.C. CONTACT. STOP
RADIO CONTACT LIMIT SWITCH. CLOSE. N.C. LIMIT SWITCH. COMMON. LIMIT SWITCH.OPEN. N.C. 24 V INDICATOR - 3 Wmax $\left[\begin{array}{l}\text { Max permitted load: } \\ \text { 2 pains photocells } \\ 1 \text { radio receiver }\end{array}\right] 24$ Vac OUTPUT

Should more pairs of photocells be required than the recommended quantity, fit an auxiliary transformer outside the control box.

$\otimes \mathbb{Q}$

16	17	18	19	20	21	22	23

 MOTOR

THREE-PHASE ELECTRIC MOTOR
N.W.: THIS PANEL IS TESTED TO OPERATE GATES ONLY THROUGH FADINI ACCESSORIES. NO WARRANTY IS ACKNOWLEDGED BY THE MANUFACTURER IN CASE THAT OTHER ACCESSORIES ARE USED OR NON CONFORMING APPLICATIONS ARE MADE WITHOUT THE MANUFACTURER'S APPROVAL.

Drwg. No. 3442
ELECTRONIC PROGRAMMER FOR SLIDING GATES THREE- AND TWO-PHASE FITTED WITH ELECTRONIC BRAKE AND D.S.A. (Autotest Safety Device)

ELECTRONIC CONTROL PANEL ELPRO 10 D.S.A. FOR SINGLE/THREE-PHASE SLIDING GATE SYSTEMS

FUNCTIONS: AUTOMATIC - HOLD ON SWITCHED CONTROL (DEADMAN CONTROL) - PARTIAL PEDESTRIAN OPENING - STEP BY STEP BY THREE PUSH BUTTONS - SAFETY PHOTO CELL SELFTESTING (AUTOTEST) -ANTI-CRUSH SAFETY EDGE - ELECTRIC LOCK OUTPUT - ADJUSTABLE ELECTRONIC BRAKE CONTROL

DESCRIPTION OF THE FUNCTIONING WITH SLIDING GATES

D.S.A. PHOTOTEST SAFETY DEVICE:

By connecting the D.S.A. card to the terminals $26-27$ the photo cell transmitter is 24 V power supplied. In case of more photo cells, connections are in parallel, the receivers are connected to the 24 V output, terminals 12 - 13. Always bring contact to terminal $1-2$ in the main board for all the photo cells of the systems. Once satisfied that the electrical connections are all right, set 9 and 10 of Dip-switch " B " as described in the section setting the safety devices of the system.

ADJusting D.S.A. SAFETY EDGE:

The N.C. connection of the D.S.A. card to terminals 24-25 allows control of the safety edge. Should more safety edges be required, these are to be series connected. Whenever an obstacle touches the safety edge, the system reverses the gate travel direction for a short spell to allow the removal of the obstacle. Reversing can be set by Dipswitch "B" No. 11 - 12 as described in the respective section

ELECTRIC LOCK:

Connection is by the provided terminals.

ADJUSTING BRAKE POWER:

The force of the brake can be controlled by a step switch from step 1 to step 5. (Optional) the switch can be fitted in the provided connector positioned on the electronic PC board.

FUNCTION LOGIC OF THE CONTROL PANEL:

The motor run OPEN/CLOSE time must be set to a longer time than that of the actual travel of the gate. The DWELL ie. wait time before re-closing is to meet the site requirements. On pulsing to open, the lamp goes on first and after three seconds the motor starts. On dwell time the flashing lamp is still on, after the gate has reached the fully closed position the lamp continues to stay on for three more seconds. Pre-flashing can be eliminated by Dip-switch "B" No.4.

FAULT DETECTION LED INDICATORS

LED No. 1: It switches on when voltage is supplied.
LED No. 2: "Photo cells" normally on. It switches off when the photo cells are obstructed.
LED No. 3: "Open" normally off. It switches on when the respective switch is activated.
LED No. 4: "Close" normally off. It switches on when the respective switch is activated.
LED No. 5: "Stop"
LED No. 6: "Radio"
LED No. 7: "Limit switch. Close" normally on. It switches off when the gate is fully closed.
LED No. 8: "Limit switch. Open" normally on. It switches off when the gate is fully open.

NOTES TO WIRING OPERATIONS

1) It is advisable not to expose the control box directly to weather conditions. If mounted outside, a suitable enclosure is recommended to protect it from sunshine and rain.
2) Earth the equipment.
3) Bridge terminals $1-2$ if you do not require any photo cells.
4) Should two sets of photo cells be required, these are to be series connected to terminals $1-2$, contact normally closed. If mounted to the same side of the gate, cross install them ie. projector of one pair next to the receiver of the second pair.
5) Bridge terminals 3-6 if you do not require any keyswitch or push buttons.
6) Fit the mains to the control box with a 0.03 A high sensitivity magnetic-thermal circuit breaker.
7) For single-phase motors the cable square section must not be inferior to $1,5 \mathrm{~mm}^{2}$.
8) The $24 \vee$ ~ output ie. terminals $9-10$ can take 2 pairs of photo cells and 1 radio receiver maximum. Should extra photo cells or receivers be required, fit an auxiliary transformer outside the control box.

IN CASE OF FAILURE OF THE PANEL

1) Check voltage: it must be 230 V single-phase / 400 V three-phase.
2) Check high voltage fuses.
3) Check low voltage fuses.
4) Check photo cells: contact must be normally closed.
5) Check voltage from the control box to the electric motor in case power has dropped.

SETTING A PROGRAM WITH ELPRO 10 D.S.A. DIP-SWITCH

DIP-SWITCH

DIP-SWITCH

 " D.S.A." CARD

 PHOTO CELL TRANSMITTER - TERMINALS No. 26-27No. 9 ON = PHOTO CELL CONTROL TEST BEFORE GATE OPERATION
(ie. phototest with the photo cell transmitter connected to the provided output)
No. 9 OFF = PHOTOTEST OUT OF SERVICE
No. 10 ON = PHOTO CELL ALIGNMENT CONTROL TEST - NO OBSTRUCTION BEFORE GATE OPERATION No. 10 OFF = TEST OUT OF SERVICE

N.W.: The electronic control panel Elpro 10 D.S.A. has been designed to suit any FADINI sliding gate operator and accessories. The manufacturer is not responsible for incorrect use of Elpro 10 D.S.A. with other applications or with accessories that are not FADINI compatible, for misuse of the electronic P.C. board and damages derived from it.
All the electrical connections are to be made as per the instructions and diagrams here
described. Supply the terminals $21-22-23$ with $230 / 400 \mathrm{~V}, 50 \mathrm{~Hz}$ voltage. The "red led" No. 1
switches on and stays on as long as the board is properly supplied. Set DIP-SWITCHES "B" to meet
the site requirements.
Drwg. No.
3442

Elpro • 10 D.S.A.

TECHNICAL SPECIFICATIONS

Supply voltage Voltage output Low voltage output
E.M. max. power output

Mains fuses
Secondary fuses
Logic
Box dimensions
Protection Standards
Elesta relay approval marks
$230 / 400 \mathrm{~V}-50 \mathrm{~Hz}$
$230 \mathrm{~V}-25 \mathrm{~W}$
$24 \mathrm{~V}-10 \mathrm{~W}$
1.100 W

5 A
1 A - 630 mA
Open - Stop - Close $285 \times 205 \times 110 \mathrm{~mm}$ IP 473
VDE-CSA-DEMCO-SEV
10 A - 230 V
4 A - 400V

TRANSFORMER

Power rate
Magnetic core
Voltage
Outputs
Working frequency
Insulation

80 VA
1,5 W / 0,50 Thick.
$0-230$ V
0-12-18-24V
$50 / 60 \mathrm{~Hz}$
$4 \mathrm{Kv} \times 1^{\prime}$
N.W.: For special applications ie. to switch on lights - CCTV etc....

SOLID STATE RELAYS are recommended to prevent the microprocessor from being affected.

GB

Drwg. No. 3442

FAIDINI'

